Лекция №10. Динамическое описание систем

Функционирование сложной системы можно представить как совокупность двух функций времени: x(t) - внутреннее состояние системы; y(t) - выходной процесс системы. Обе функции зависят от u(t) - входного воздействия и от f(t) - возмущения.

Для каждого $t \in T$ существует множество $z \in Z$.

 $Z=Z_1\times Z_2 ... \times Z_n$ - множество n мерного пространства. Состояние системы z(t) - точка или вектор пространства Z с обобщенными координатами $z_1, z_2, z_3, z_4,, z_n$.

 $U=T \times Z$ - фазовое пространство системы.

Детерминированная система без последствий

Детерминированная система без последствий - система состояние которой z(t) зависит только от z(t0) и не зависит от z(0) ... z(t0), т.е. z(t) зависит от z(t0) и не зависит от того каким способом система попала в состояние z(t0).

Для систем без последствия еее состояние можно описать как:

$$z(t) = H\{t,t0,z(t0), (t, x_L]_{t0}^{t}\},$$

где $\{(t, x_L]_{t0}^{t}\}$ - множество всевозможных отрывков входных сообщений, соответствующих интервалу (t0, t]. Н - оператор переходов системы.

$$t \in T$$
, $t0 \in T$, $z(t0) \in Z$, $(t, x_L|_{t0}^t \in \{(t, x_L|_{t0}^t\})$.

Формальная запись отображения:

$$T \times T \times \{(t, x_L|_{t0}^t)\} \rightarrow Z$$
.

Начальные условия $H\{t0, t0, z(t0), (t, x_L]_{t0}^{t0}\} = z(t0)$.

Если $(t, x_{L1}]_{t0}^{t} = (t, x_{L2}]_{t0}^{t}$, то $H\{t0, t, z(t0), (t, x_{L1}]_{t0}^{t}\} = H\{t0, t, z(t0), (t, x_{L2}]_{t0}^{t}\}$ Если t0 < t1 < t2 и $t0, t1, t2 \in T$, то $H\{t0, t2, z(t0), (t, x_{L}]_{t0}^{t2}\} = H\{t2, t1, z(t1), (t, x_{L2}]_{t1}^{t2}\}$, так как $(t, x_{L}]_{t0}^{t2}$ есть сочленение отрезков $(t, x_{L}]_{t0}^{t1}$ и $(t, x_{L}]_{t1}^{t2}$.

Оператор выходов системы G реализует отношение

$$\{(t, t0)\} \times Z \times (t, x_L)_T\} \rightarrow Y,$$

$$y(t) = G(t, t0, z(t0), (t, x_{L2}]_{t0}^{t}).$$
 $(x, y) \in X \times Y$ - расширенное состояние системы.

Динамическая система без последствий (динамическая система Кламана) - упорядоченное множество $(T, X, Z, Y, \{(t, x_L)_T, H, G), удовлетворяющие поставленным выше требованиям:$

- 1. Т является подмножеством действительных чисел.
- 2. $\{(t, x_L)_T\}$ множество отображений $T \rightarrow X$, удовлетворяющие сочленению отрезков.
- 3. Оператор переходов H реализует $\{(t, t0)\} \times Z \times (t, x_L)_T\} \rightarrow Y$.
- 4. Оператор выходов системы G задается видом $y(t) = G(t, t0, z(t0), (t, x_{L2}]_{t0}^t)$.

Детерминированные системы без последствия с входными сигналами двух классов

Расширение понятие системы идет по трем путям:

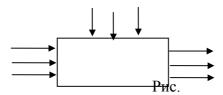
- 1. учет специфики воздействий;
- 2. учет последствий;
- 3. учет случайных факторов.

Учет специфики воздействий

Вводится понятие управляющих сигналов $u \in U$; u=M(t), или если сигнал $u \in U$ описывается набором характеристик. $U = U_1 \times U_2 \times U_L$

Отличие от предыдущего случая, то что множество моментов времени $t_{\rm u}$ и $t_{\rm x}$ могут не совпадать.

Вводится расширенное множество $X^* = X \times U$, таким образом состояние системы описывается вектором $x = (x, u) = (x_1, x_2, ..., x_n, u_1, u_2, ..., u_L)$.



С учетом этого предыдущие формулы приобретают вид. оператор переходов:

$$\begin{split} &z(t) {=} \ H\{t, t0, z(t0), \, (t, \, x_L, \, u_M]_{t0}^{\ t}\}, \, \text{или} \\ &z(t) {=} \ H\{t, t0, z(t0), \, (t, \, x_L]_{t0}^{\ t}, \, (t, \, u_M]_{t0}^{\ t}\,\}, \, \text{что соответствует отображению} \\ &T \times T \times \ \{(t, \, x_L]_T\} \times \ \{(t, \, u_M]_T\} \ \to Z. \end{split}$$

Детерминированные системы с последствием

Большой класс систем характеризуется тем, что для представления их состояния необходимо знать состояние системы на некотором множестве моментов времени.

$$\begin{split} z(t) &= H\{t, (t_{B0}, z_{\omega})_{t0}, (t, x_{L}]_{t0}^{t}, (t, u_{M}]_{t0}^{t}\}, \\ \{(t, t0)\} &\times \{(t_{B0}, z_{\omega})_{t0}\} \times Z \times \{(t, x_{L}]_{T}\} \rightarrow Z. \end{split}$$

Где $\{(t_{B0}, z_{\omega})_{t0}\}$ - семейство всевозможных состояний системы.

Стохастические системы

Системы функционирующие под воздействием случайных факторов, называются стохастическими. Для их описания вводится случайный оператор:

 $\omega \in \Omega$ - пространство элементарных событий с вероятностной мерой P(A).

Случайный оператор Н₁, переводящий множество Х в множество Z:

 $z = H_1(x, \omega)$, реализующий отображение множества Ω в множество $\{X \rightarrow Z\}$

Оператор переходов будет представлен соответственно:

$$z(t) = H_1\{t,t0,z(t0, \omega_0), (t, x_L]_{t0}^t, \omega'\},\$$

 $y(t) = G_1(t, z(t), \omega'').$

Где ω_0 , ω' , ω'' - выбираются из Ω в соответствии с $P_0(A)$, $P_x(A)$, $P_v(A)$.

При фиксированных ω ', ω '' - система со случайными начальными состояниями.

При фиксированных ω_0 , ω '' - система со случайными переходами.

При фиксированных ω_0 , ω' - система со случайными выходами.